Commit 06e08c50 authored by Fernando Pérez Panadero's avatar Fernando Pérez Panadero
Browse files

Functions help

parent 10758628
Showing with 73 additions and 5 deletions
+73 -5
......@@ -19,7 +19,17 @@ using ..Fields
using ..YM
using ..Spinors
"""
struct DiracParam{T,R}
Stores the parameters of the Dirac operator. It can be generated via the constructor `function DiracParam{T}(::Type{R},m0,csw,th,ct)`. The first argument can be ommited and is taken to be `SU3fund`.
The parameters are:
- `m0::T` : Mass of the fermion
- `csw::T` : Improvement coefficient for the Csw term
- `th{Ntuple{4,Complex{T}}}` : Phase for the fermions included in the boundary conditions, reabsorbed in the Dirac operator.
- `ct` : Boundary improvement term, only used for Schrödinger Funtional boundary conditions.
"""
struct DiracParam{T,R}
m0::T
csw::T
......@@ -45,6 +55,18 @@ function Base.show(io::IO, dpar::DiracParam{T,R}) where {T,R}
return nothing
end
"""
struct DiracWorkspace{T}
Workspace needed to work with fermion fields. It contains four scalar fermion fields and, for the SU2fund and SU3fund, a U(N) field to store the clover term.
It can be created with the constructor `DiracWorkspace(::Type{G}, ::Type{T}, lp::SpaceParm{4,6,B,D})`. For example:
dws = DiracWorkspace(SU2fund,Float64,lp);
dws = DiracWorkspace(SU3fund,Float64,lp);
"""
struct DiracWorkspace{T}
sr
sp
......@@ -146,6 +168,14 @@ function krnl_csw!(csw::AbstractArray{T}, U, Ubnd, ipl, lp::SpaceParm{4,M,B,D})
return nothing
end
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes the Dirac operator (with the Wilson term) `\`\ D_w \`\` with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
......@@ -310,6 +340,12 @@ function krnl_Dw!(so, U, si, m0, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},S
return nothing
end
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Computes \`\` \\gamma_5 \`\` times the Dirac operator (with the Wilson term) with gauge field U and parameters `dpar` of the field `si` and stores it in `so`.
If `dpar.csw` is different from zero, the clover term should be stored in `dws.csw` via the Csw! function and is automatically included in the operator.
"""
function g5Dw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D}) where {B,D}
if abs(dpar.csw) > 1.0E-10
......@@ -480,6 +516,13 @@ function krnl_g5Dw!(so, U, si, m0, th, ct, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D}
return nothing
end
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpaceParm{4,6,B,D})
Applies the operator \`\` \\gamma_5 D_w \`\` twice to `si` and stores the result in `so`. This is equivalent to appling the operator \`\` \`\`
The Dirac operator is the same as in the functions `Dw!` and `g5Dw!`
"""
function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
if abs(dpar.csw) > 1.0E-10
......@@ -554,7 +597,11 @@ function DwdagDw!(so, U, si, dpar::DiracParam, dws::DiracWorkspace, lp::SpacePar
return nothing
end
"""
SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}})
Sets all the values of `sp` in the first time slice to zero.
"""
function SF_bndfix!(sp, lp::Union{SpaceParm{4,6,BC_SF_ORBI,D},SpaceParm{4,6,BC_SF_AFWB,D}}) where {D}
CUDA.@sync begin
CUDA.@cuda threads=lp.bsz blocks=lp.rsz krnl_sfbndfix!(sp, lp)
......
"""
struct U2alg{T} <: Algebra
Elements of the `U(2)` Algebra. The type `T <: AbstractFloat` can be used to define single or double precision elements.
"""
struct U2alg{T} <: Algebra
u11::T
u22::T
u12::Complex{T}
end
"""
antsym(a::SU2{T}) where T <: AbstractFloat
Returns the antisymmetrization of the SU2 element `a`, that is `\`\ a - a^{\\dagger} `\`. This method returns al element of `U2alg{T}`.
"""
function antsym(a::SU2{T}) where T <: AbstractFloat
return U2alg{T}(2.0*imag(a.t1),-2.0*imag(a.t1),2.0*a.t2)
end
......
"""
struct U3alg{T} <: Algebra
Elements of the `U(3)` Algebra. The type `T <: AbstractFloat` can be used to define single or double precision elements.
"""
struct U3alg{T} <: Algebra
u11::T
u22::T
......@@ -10,6 +14,11 @@ struct U3alg{T} <: Algebra
u23::Complex{T}
end
"""
antsym(a::SU3{T}) where T <: AbstractFloat
Returns the antisymmetrization of the SU3 element `a`, that is `\`\ a - a^{\\dagger} `\`. This method returns al element of `U3alg{T}`.
"""
function antsym(a::SU3{T}) where T <: AbstractFloat
t1 = 2.0*imag(a.u11)
t2 = 2.0*imag(a.u22)
......
......@@ -9,11 +9,6 @@
### created: Tue Nov 30 11:10:57 2021
###
"""
function CG!
Solves the linear equation `Ax = si`
"""
function krnl_dot!(sum,fone,ftwo)
b=Int64(CUDA.threadIdx().x)
r=Int64(CUDA.blockIdx().x)
......@@ -32,6 +27,12 @@ function field_dot(fone::AbstractArray,ftwo::AbstractArray,sumf,lp) where {T}
return sum(sumf)
end
"""
function CG!
Solves the linear equation `Ax = si`
"""
function CG!(si, U, A, dpar::DiracParam, lp::SpaceParm, dws::DiracWorkspace{T}, maxiter::Int64 = 10, tol=1.0) where {T}
dws.sr .= si
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment